AQA Combined Science Trilogy

Unit C6 The rate and extent of chemical change

Year:

Calculating rates of reactions			
1	Mean rate	quantity of reactants used / time taken	
	of reaction =	or	
		quantity of reactant formed / time taken	
2	Factors that	concentration	
	affect rate	pressure	
	of reaction	surface area	
		temperature	
		catalysts	
3	Collision	chemical reactions can occur only when reacting	
	theory	particles collide and with sufficient energy	
4	Activation	minimum amount of energy that particles must have to	
	energy	react	
5	Catalysts	increases the rate of a chemical reaction but is not used	
		up, by providing a different pathway that has a lower	
		activation energy	

Reversible reactions and dynamic equilibrium				
6	Reversible reaction	the products of the reaction can react to produce		
		the original reactants		
7	Reversible symbol	4		
8	Energy changes in	if a reversible reaction is exothermic in one		
	a reversable	direction, it is endothermic in the opposite		
	reaction	direction		
9	Equilibrium	when the forward and reverse reactions occur at		
		exactly the same rate in a closed system		
10	Le Chatelier's	if a system at equilibrium is subjected to any		
	Principle	change, the system will adjust itself to counteract		
		the applied change		

RP: Rate of reaction					
11	Independent variable	concentration			
12	Independent variable	volume of gas formed in a given time or time taken to change colour			
13	Control	 all variables below must be kept the same (unless it is being tested as the independent variable) pressure surface area temperature satalysts 			
		• Catalysis			
14	Method example (for changing	measure 50 cm ³ of dilute sodium thiosulfate solution to a conical flask.			
	temperature)	place on piece of paper with a black cross drawn on it.			
		add 10 cm3 of dilute hydrochloric acid to the conical flask.			
		swirl and start a stop clock.			
		when the cross can no longer be seen, record the time.			
		repeat with different starting temperatures			